跳转至

Lecture 1 Introduction

Review of Linear Algrebra

Affine Transformations 仿射变换

Affine map combines linear map and translation.

\[ \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix} . \]

Using homogenous coordinates (齐次坐标)

\[ \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}. \]

Eigenvectors and Eigenvalues

  • The eigenvalues of symmetric matrices are real numbers.
  • The eigenvalues of positive definite matrices are positive numbers.

最后更新: 2023.01.16 00:06:03 CST
创建日期: 2022.11.08 20:35:08 CST